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AXISYMMETRIC

SUMMARY

SUPERSONIC FLOW IN ROTATING LMPELLERS 1

By AETHU-E TV. GOLDSTEIS

General equiztwm are deceloped for isentropic, frictimdesa,
am”qmwneh+cjlow in rotati~ impeLler8un”thblade thickn+m
tiriiminto account and mz”thbladeforces eliminated in.favor of
the blade-surfacefunction. It is shown that the total energy of
the ga8 relatice to the rotating coordinate w8te7n is dependent
on the stream junction only, and that if the$010 upstream of
the impeller is cortez-jree, a relocity potential exists which is a
fwnctwn of only the radial am? atil di.stanctxin the impeller.

The charactt?ti8ticequatio?wfor supersonic $ow are decel-
oped and used to inoe8tigati$OW8in 8ereral conjigwratiom in
order to awertain the efect of variatiom+of the boundary con&-
tims on the internal .j%w and the work inpui. Conditions
m=ied are prerotation of the ga8, bladeturning rate, ga8 veloci~
at the bladetip8, bide thickness, and sweep of the leading edge.

INTRODUCTION

No method of practicaI importance has been described@
the literature for computing the flow in the three-dimens-
ional region bet.meen the blades of a supersonic compressor.
This deficiency in design technique has been partly met by
using two-dimensional theory to compute the variations of
the relative flow from blade to blade, by aemning no radiaI
flow components, and by neglecting spanwiee -mciatiorw
This procedure is probably satisfactory for designs with a
ratio of blade-root radius to blade-tip radius close to unity
and for cylindrical hub and casing shapes. When this ratio
is emaU, the spwwise -wwiations are significant. A method
devised at the KACA Levcis laboratory during IWO is de-
scribed herein for computing the magnitude of these varia-
tions, when blade-to-blade -mriatione are neglected, by
assuming a large number of bIades m the impe.Uer and deal-
&C -ivith the circumferential average flow. This technique,
when combined with estimates of blade-to-blade -mriations,
is useful for designs with closely spaced blades.

The usefulness of this approach may possibIy be extended
to supersonic flow in a manner analogous to the method
described in reference 1 for subsonic ffo-iv; the ati.punetric
solution is fit found and then used as a base for computing
the blade-to-blade variations. The particular method used
in the blade-to-bIade calculation of reference 1 is series
expansion, which is not apphcable ~0 SUPe.LSO~CflOWSb+
cause of the t=ieknce of solutions with discontinuous
derivatives.

In reference 2, the equations for internal flow with zero

blade thickness are trandated into the characteristic equa-
tions for the derivatiws of the stream function, and it is
show-n there that the equations are hyperbolic if the relati~e
veIocit.y is supersonic, provided the ratio of the tangential to
the axial velooit y is a gi~en field function. (This condition
includes the specia.I class of blades containing radii from the
axis of rotation.) H the tangentitd vekwity is prescribed,
the meridional velocity component is the decisive factor in
determhing whether the equations are hyperbolic.

The present report treats the wIocity components directIy
after the manner of reference 3 for arbitrary preaasi~~ed
bIade shapes. The design problem is solved by fiding the
hub shape that will give a prescribed velocity distribution
a-Iong the casing (or any other sekcted stream surface). In
the course of the solution,’ the tangentially avera@ flovi is
completely determined in the interior of the impeIIer.

The purpose of this paper, in addition to describing the
method in a mathematical outline, is to examine the per-
formance of the technique in computed exampke and to find
vihether any peculiarities in the flow arise from the boundary
conditions imposed, and to de-dop a background of experi-
ence for the design of impeIlere of the type considered by
em.mination of the Meet of systematic -mriatione of impeller
design parameters on the internal flow-. The parameters
mried are inlet prerotation, blade turning rate, gas velocity
distribution at the casing, bIade thickaees, and svieep of the
blade leading edge.

Appro.simately 160 hours of computing are required to
work out about 100 points for each of the impellers. This
time cam be reduced by application of t-he punched-card
computing technique to part of the procedure.

DEVELOPMENT OF EQUATIONS FOR AXISYMMETRIC FLOW

Equations describ~~ the fluid flow are developed in con-
venient form by use of the equations of motion and con-
tinuity, the conditions of ti symmetry, and isentropic
state changes. The uniformly distributed blade forces,
which we inconvenient in calculations, are eliminated tiom
the equations by substituting the blade surface function, so
that. the condition of inhgrability is automatically satisfied.

EQUATTOXOFCONTINUITY

The continuity equation for steady flow is

V.(pw)=o

I dnpewdesh-ACA TN 232St“.&kymmetriuSupemonfcFIowinRotatingImpeIIers” byArthuW. GoHm, 1951.
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(Saymbols am defined in the appendix.) If axial symmetry
is assumed, the equivalent in cylindrical coordinates is

Tho presence of blad= serves LOmodify these equations if
the space Wxl by the blades is taken into account. If the
impeller contains N bIades with thickness t measured in the
direction of rotation, the ratio of volume amilable for fluid
flow to the actuaI volume of. any space eIement .approachee
(in the limit se the number of bladee increaaw’indefmitely
with Nt fixed)

Nt
: l–~—=

The continuity equation is therefore oht.ained by reducing
the specific-mass-flow terms PUend PWby the ratio A/r to
account for the area reduction:

:rw)+: (WA)=O (1)

Because none of the scalar quantities is a function of d,
equation (I) impliw the existence of a stream function
*(r,@ auch that ‘“ - “ ““”

t#i=pIOA
1

#,=o J
(eubscripta indicate partial derivatives) or

v#=pAjx Y“=pAjxw (2a)

EQUATION OF MOTION

Substitution of energy for pressure.-The equation of
motion for steady, nonviscous, isentropic flow in terms of the
rdative valocity is ,. .

where W? is tie centiugal force and 2WXKl, the ConoIis
force. For ieentropic conditions, the substitution

may be made, sc that the equation is then

4+7-9= IVX(VXW+211)+F=W’XVXV+F

(q
The quantity

~~ $=h+g-d-u+tor) “- “““ (4)E~h+—
-.

is a measure of the total energy of the gas particles in the
dative system of ccordinat.w and remains constant (m m

be shown for fictionkse flow) for any particle; energy is
intemhang@ among the forms of cnthalpy, kinetic energy,
and potential energy (—c#/2) resulting from the centrifugal
force field. In reference 2, E is shown to be conetnnt. for
any particle for frictionbe flow and no heat transfer with n
tlnite.number of blades-in the ti”@ler.

E“order. to show that E is constant for any pmticlc in
axially symmetric flow, the direction of the field.force is fimt
identified. If the blades are considered to increase inddi-
nitely in number and to retain their c.a.niber-]ineShnpej the
forox exerted by the. blades are merely the pressure forces
exerted normal to the blade surfacee, which h tho limiL
approach uniformly &etribu&d forces in tho body of lhc
fluid. The relative flow lines are ahvaya contained in onc -
of the family of blade surfaces, sc that the field or Mado
forces must be normal to the velocity. If the scalar producL
of equation (3) is taken with the relat,ive vcIocity, the result
iE then

WWE=O .

which indicatee that E does not change along any flow line.
Elimination of blade force.—The blade form can be

eliminated from the equation of motion if the equation for
the bhide surfacesis assumed kno~m. Tho force may tlm
be evaluated after the veIocity components are known.

Under the condition of axial apnnetry, the equation for
the famiIy of blade stiacee

a(r, d, 2)= constant

J_@ be eimpWd. If the cmustant is changed, thero ie m
shift horn one blade to another. Because of axial eymmctly,
this shift is equivalent to rotating the original Made JJy a
fied angle. Therefore, the squat.ion for the surfaces can be
put into the fomu

a=d+j(l’,z) (5) .

Because tIiFreIative velocity %W lines are con~incd in lho” ‘“ -
blade surfaces, W is normal to Va as well as to V#. ‘1’he
relation among the three vectors can therefore be shown
t.obe -

~=5v- .
From the cbndition of axial symmetry,

bE~rj9VE=0

Because W VE and V# are normal
must be pertiel, and conaequentiy E
f~ction of * only (reference 4); that is,

E=E(#) ~

(0)

Lo j and W, Lhcy
isknowntibca

(7)



ASISYM31ETR1C SUPERSONIC FLOW 3S- ROTATIXG IMPELLERS 525

Tisertion of equations (4), (6), and (7) into equation (3)
yiekls (tithout resolution of the term VXT~

The bIade pressure forces F are normal to the blades and
therefore parallel to Va; this relation thus includes only ‘two
nonparalle~ vectors Va and V#, so that the components must
separately satisfy the relatiom

( )
F=– ~ ~$.~x~” Va=–(rj. WxVx~~Ta (8)

.

and

~=–~wxv
d+

(9)

Special conditions,-Two speciaI conditions of technical
importmce are considered: In high-speed machiuw, blades
with radiaI elemenk are desirable in order to eliminate bend-
ing Ioads resulting from centrifugal forces. bother fre-
quently occurring circumstance is that of zero vorticity
upstream of the impelIer.

For blades tith radial elements, the -iector i lies in the bIade
surface and therefore

i . va=fr= o

l’herefore~ is a function of z alone. From equation (6),

o= n’ .Vet=:+ Uj-r+wf. (lo)

so that for radiaI blade element-s

df
‘=–wr z (loth)

ThisreIation provides considerable simpli6cation of the equa-
tions developed later for sohiug the flow problem.

For vortex-free flow upstream of t-he impdler, equation (3)
is reduced for conditions there by setting Q= F=VXV= O
and substituting V for lT to get

( .)V “h+? =0

or
o

h+~=constant

Also, zero -rorticity gh-ee, for a..-..-aIsymmetry,

From the first and last termz and &al spetry,

ur+ d= constant

Then the -due of the total energy E reIat-ive to the impeIIer is

which is constant upstrea& of the impeller. Then by equa-
tion (7), E remains constant in the impeller, so that the equa-
tion of motion (9) becomes

Va. vxv=o (11)

If the system of coordinates used is r, z, and a for qre.ssing
equation (11), there results (reference 4)

[g (Tv.vaxk)], .=[: w“ixw]=,=

The subscripts indicate which variabks are heId constant-.
This equation and the fact that the quantities in parentheses
are functions of r and z only establish the existence of a poten-
tkd function of ~ and z onIy (@(r,z)) such that

The last relation indicates that w-M r and z constant, @ is
constant; this is true regadw of the third independent
variable, which may be taken as 6. The three equatiom for
@are then put into ~ector form

v@=i(rV.vaXk) +k(rV.i XVCI) (12)

The absolute -reIocity may then be show-n to be

V=v%-?’(?b+cdr)va (13)

and from
V. Va= TV.VCY+ mrj. VCE= cd

equation (13) gi~es for the moment of momentum PY

P= T(u+w)=@—v@”va(vlY)’

so that .
v=v@+(@–va . VW)Va

(v’a!)’

(14)

(13a)

The potentiaI @ can be used as an alternative to the strea~
function in soh-ing for the flow. Equatiort (13) indicates
that the projection of V@ on the blade surface is equal to
the projection of the absolute docity on the blade surface.
The equation for # and that-for@ are obtained in the following
manner: The velocity V is eliminated from equation (9) by
means of equation (6) and t-here is obtained
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)Vet . vx(~ V+XVCY +2wfz=–
pAdE ““
r71j”

which is also applicable in the general case with nonzero
vorticity upstream of the impeller.

In order to obtain an equation for @, equation (13a) is
substituted into equation (2a)

V+= pArW3X17= @lrV9XV@+p@V19XVa
Then

o=vxvlj=vx~Arvf? x(v@+/Na)]

Although obtaining a solution in terms of + is feasible
whether G?E/cl#is zero or not, when dE/&t = O, @ may prove
more convenient. In regions where U’2/a2 is nearly 1.0,
because ]WI is a double-valued function of the stream-.
function derivati~e p]ll’1, it will be uncertain whether the flow
is subsonic or supersonic. A solution obtained from a net-
work -WOUMrequire a very fine spacing in regions where
I’Irl=a,

... . .-.

GENERALEQUAT20NSIN CY2JNDR2CALCOORDINATBB

In general, where j,# Oand dlf,hf$ #O, the equations for the
internal flow are solved simultaneously for the two velocity
components o and w, when u has been eliminated from the
equations by using equation (10). The equations are trans-
lated from their vector form to scalar notation by utilizing
cylindrical coordinates. Then a further transformation is
employed with characteristic quantities as the independent
variables.

The continuity equation (1) is first written in vector form
(the condition of asial symmetry being used) and multiplied
by r/PA

For isentropic flow,
Vp Vh—=—
P a%

Introduction of E by equation (4) and use of 1?’. VE=O
produce

This expre~sion fhdy reduces to

In cylindrical coordinates, equation (9) becomes

If equation (10) is now substituted into @ua.tions (15) and
(16), there results for continuity

and for the equation of motion

(1 +r?f.~wr+Pj.f ,(v,–wz)–(l +?’’j?)O,+

‘2’z’[v:@)+;$t)l-2”+’18)
USEOFCHARACTERISTICVARIABLES

Statement of baaio eqnations,—The method of reference 3
is applied to equations (17) and (18). Tho object is to find
two alternative equations with new vmialh $ and ~, instead
of z and r, such that each equation (corrwponding to equa-
tions (17) and (18)) contains derivatives with respect to only
one of the independent variables. Two additional equations
are required to find the position coordinates z and r in terms
of the characteristic coordinates g and q. There arc two
characteristic slopes dr/dz,f+ and ~-, the first corresponding
to &varying and q constant, the second to g constant nnd n
vary@. If f represents either of these elopes and a repre-
sents either of the coordinate corresponding to the tippro-
priate ~, the results are

r~=lz. (19)

(the upper sign of + refers to ~+, the lower, to ~-) and

Jw.+GD.+Lz.=0
where

11= 1+r’jr2–~’P(Va)9

~42=(+H@
a’

J.w_(l +pfz~

G=(W- l)rsf,j,+~r’(va)’ &hWa)’(M2- 1) -

L–= –(rV,f,r+l +T’f,Wl+

[
~(r~f. ( )1—w)—l—~yfzfa
( )D,=; W2fZz+2wvf,z + v2f,, +

i 7
VT b(A/r)+y N-#r)

; 1+$—$ +x -&-

~’=r’f,2[’:&)+~w:)l-2

(21)

f21a)
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Equation (2o) for f shows that the system is hyperbolic if
W>l.

b the homogeneous equations (Dl=~*=O), the coefficients
L+ and L_ (corresponding to J_+ and t-] are zero; conse-
quently, in the holograph plane the slope of the cha.rac.teris-

tics would be given by ~= –~- In phme flow, J/Q is a

function of v and w only, and this equation maybe integrated
and the hodograph solutions tabulated in advance of applica-
tion b any particular problem that may arise. In the pres-
ent circumstances, however, J/@ also involves the position
coordinates, and Dl#O, Dz#O. A correspondingly easy
method of solution by simple wa~es is therefore unavailable.

z
FIQUBCI.—Characteristic and cyhdrlcal coordhks

Instead, the four (r=[ or ~) equations (19) and (21) are inte-
grated simultaneously in a step-by-step procedure.

Method of computation.-Iu figure 1, conditions me sup-
posedly known at PI and Pz and conditions me to be computed
at Pa. Then equation (19) in &tTerence form is

T8–?’,= (Z,–z’,)f+ (22) .

TS—T.Z= (%–z2)r- (22a)

This system may be solved for T3and %. Then similarly for
equation (21), the difference form is

J(W2–W,)+G+(L!–U) +L(zs-zi) =0 (23)

J(wa-wJ+G_&–nJ+ L-(za-z2)=0 (23a)

The subscript + indicates that ~ is constant and the subscript
_ indicates that ( is constant. In equations (22) and (23)
the coefficients {, J, Q, L are averages between vahms for the
points PI and Pa. For the iirst approximation, only the values
at PI me kown and these values are used-

Whan approximate velocity components and position coor-
dinates axe thus determined for P,, the coef6cients t, J, Q,L

may be computed there and averaged for a better apprcmima-
tion of the position coordinate and the velocity components
at Pa. This process is repeated as often as necessary to
arrive at an answer of satisfacto~ accuracy. The smaller
the interval, the quicker the convergence to the solution-
In each stage of the procass, if dE/d~#O, then ~s must be
computed from

From the value of ~~, dE/cIYat. P~ may be found.

f Cunskv?t
~ Caa90nf

FIQUM 2.-Rdatfon between shaIMofbamdary and bmndary conditions.

BOIJNDARY CONDITIONS

GESERAL

The discussion in the previous section implies that boundary
conditions are known on a curve C containing points such as
PI and PZ, and that the solution is then extended into a region
containing points such as Pa. The shape of the blades and
E ($) are assumed known in that region. On the curve C,
there are known in addition the values for w and r, from
which alI other variables (such as dE/d#, ~, u, p, az, and so
forth) may be computed. Suppose the initial curve is such
that the characteristic curves intersect it at two points, such
as A md D or A and E in @ure 2. Tha by equation (21),
there is a reIation betwem the va.riabks at A and D that does
not permit tie independent specification of the mu-iables
o and w at A and D. Similarly if two characteristics passing
through two boundary points reach a third boundary point,
then another degree of hedom is lost. In @ure 2, if two
variabIes are prescribed on AB ad EF1then one variable may
be prescribed on BC and DE, and none on GD.

T1-P COXOITIOXS

The supersonic impeller has a high pressure ratio per stage
and a large air-handling capacity per unit of hontal area.
In order to maintain the large capacity, the tip radius at
the entrance should be at least es lmge as at the tit. Ii
order to protide a maximum work output with a minimum
turning, the e-x-ittip radius should be at least as huge as the
entrance tip radius. A reasonable shape for the tip stream-
line is therefore a surface of constant radius, although smaller
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radii between the entrance and the exit might be useful in
order to affect the internal flow. If the casing shape is se-
lected, then, as it is also a streamline, the ratio v/w is
specified. Selection of the velocity or of a velocity compcmmt
remains. This selection may be made by consideration of
the blade-to-bltide velocity variations and by using some
approximate method such as that outlined in the following
paragraphs.

In three-dimensional motion (finite number of blades),
Kelvin-s theorem states that if the absolute velocity is irro-
tational upstream of the impeller, it wiII remain so inside the
impeller; that is,

vxT7’=Vx U7’+2uk=0

where the prime indicates velocities of the nonsymmetric
flow. Then

V’+vxv’=o
may be reduced to

# (H-’.7j)=r~+(u’+2ur)~.i .(24)

where hu’ji% is the arc-length partial derivative of u’
along the direction of .~. This equation is now integrated
from the pressure surface of one blade to the suction surface
of the next in the direction r= constant, z=constant. The
variable @increases by the amount 2rA/i’Vr, so that

If it is now assumed that the values of bu’/i% and of u’
averaged across the channel are. equal to the vahma obtained

A B c’

/~A ., cmf70w—

Centerline
‘(a)

(0) CondltIom on E’S and SC uMed.
(b) Conditionson B’B related to thoseon BC.
FKWRE &-Boum3ary oxMJtl@ for impeller.

from the axisymmetric solution, and further thaL (il’’”~),=
IW,’], then

if the relation
0/111’1=iq

is utilized. In this equation all the velocity compomwts
without subscripts are obtained from the axisymmclric
solution. If

113-’,l+lW,~=2]l7”/

or some other connection between IH“,!, 111“P], IHI, and
the impeller geometry is assumed, the blade surface veloci-
ties at the casing may be obtained with that relation Rml
equation (24a). The distribution of IWI aL the casing may
therefore be selected on the basis of obtaining a desired
blade surface velocity distribution or distribution of u.

Suppose that, in some mmmer, all the variables have
been selected at the casing (curve BC in fig. 3(a)). The
flow is then uniquely determined in the region BP,C enclosed
by the easing and two characteristic lines. If the flow is
also prescribed at the lerding-edge surface BB’, fhn the
flow is determined in the extended region B’ BCP,P2. WhcII
the characteristic line BP8 falls inside this region (fig. 3(a)),
no &fEcuIty results. If, however, the characteristic B’P4
intersects the casing inside the blade region (f%. 3(b)), then
the velocity may not be prescribed on the curve BP4 (refer
to discussion of & 2), or alternatively, only one of the
velocity components may be prescribed on BB’ (BB’ is noL
a streamline). Similar considerations arc valid on the curve
CC’ at the esit.

The selection of values for tho vmiablcs v and w on the
entrance ~dge BB’ must be made by joining the solution
for the flow in the region ABB’A’ with that for the flow in
the blade region BCC’B’. Because the blades may dcffccL
the air at BB’ discontinuoudy and bccausc the dfceL of
thickness may be felt by the air in a discontinuous mrmncr,
the discontinuities. in the flow should be evaluated. A
method for making this estimate follows:

The angle j3is dehed as the angle beLwwm Lhc met’idionrd
projection of the blade leading edge and the z-axis (f%.
3(a)). The conditions outside the blade region am dc.sig-
nated by subscript zero, Lhose inside the. blade rogionj by
no subscript, Then across the surface BB’ tho equation
of continuity yields

p&o*sin /3—V(JCosp)
‘(’-%)

p(m sin f?– v cos f?) (25)

The discominuity in blade thickness can cause no force
in the entrance surface BB’, and the blades can exert no
form in the blade surface. Therefore no force and no
discontinuity in momentum exist in the direction ‘of the
cmwss repr~nting the intersection of these two surface9;
that is,
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(W– 17’,).(i cos p–k sin IS)XYcd=O
or

r(ti-u~(~, Sin ~+fz COS@=(lI - U~Sill~+(W-’W,]COS ~ (26)

There is aIso avaiIable

u = —r(wf. + vj,) (27)

If the process is aemmed isentropic, then

is obtained by utilizing the fact that

~=hO+ ~02 a%oz=h ~ TF a%—.—9 ~ gz
and that

ro=r

There are then available equations (25), (26), (27), and
(28) for finding p, u, n, and w. The initial values of j, and~.
may be chosen from these equations to obtain desired rela-
tions between the ~elocity components outside and inside the
blade regions.

~PUCATIOXSOFM3HHODOFCEABAmEEUsmCS

In the examples computed in this section, the conditions
for which solutions are obtained vary. The purpose of these
scdutions is to find the effect of some wmiations of prescribed
conditions on the resultant flow. For all the examples,
dE/di= O; the %o-ivis vortex-free upstream of the impeller;
at the leading and trailing edges the radiaI component o of the
-reIocity is zero; and the bIades contain radiaI elements
(~~0]. The relati~e Mach number at the conjunction of
the leading edge of the blade and the impeller casing is 1.94.
lkcept in e.sample VI, the value of the blade angIe with
respect to the axial direction is zero at the e.sit (~.=0). The
other conditions are summarized in the following table:

, 1

.— ~—l—

1 0 033 al 1.53a’
I

t H
I

F ‘

–a3au1 ma35u, L-Mu,

!Lu -0.3 curt 0.835m L44aI

,——
Iv -a3am aastia, L44tzI

!—~
I i–

\- ! -0.3 au, 0.s35., L44a,

t I I— ,—, —
\_I I –0.3am 10.835uI1.44aI

i I

‘1i
swep- Blade

Blade @k/ T~e$w bek t~.
angle velwky, I (deg) ne5s

%$’
L

-61.S

.~ -

(=) 0}0 o 0
too——

–%4 L94al oto 43 +
rnm&nm

——
-a-A4 L 94aL Twke 45 0

emmple

— ~ T* &–64 4 0
e~ple

— ~+4

+

Twice
exe.n#e

‘“4 ‘F + +

● Determined by condkfons d Ieadlng edge w q’rt-O.W; held constantat !U a horn
Zjn-o.a% to 1.0.

b Constantat 194 a to zlrt-o.~; decreaccdtu L4 a (-1.6 III) at cd.
cZerofromz-O to rlrt=O.fW from z/r~=O.%to z/rt-OJ the mrrection for blade t~ is

A.,w{-y [1-CC68. (;+]]

dDetermined by hdlng edge Wtia! mdII& L94a.

Example I.—The resrdts of the computation for the fit
example are summarized in figure 4 (a), which shows stremn-
Iines, contours of comrtamt Mach number and constant energy
level, and some of the characteristics of the &family, which
intersect the leading edge. Because of the intersection of
the chmacteristics from the lead~ edge with the tips of
the blades, there is no control o-rer the Mach number, as the
b~ade shape was prescribed by

de df
( )‘Z=–TZ=–1’04; l+WS “;

The Mach number at the casing rises to a.mtinm of 2.1 at
z/r~= 0.356, and is then assigned a constant value. By equa-
tion (4), the stagnation enthalpy H (=h+W/2), which
measures the energy of the gm, increases with z at the rate

m au
‘=”r zaz

M the casing 0=0, and therefore, from equation (lOa) and
TP=u’+u?,

3H cor
(

Tu)adzf
z=~ )4mz-~ ~

This eqwession shows that the rate of work input is increased
by inmeasing the r~te of blade ttig and decreased by
increasing IT. Figure 4 indicates that the rate of tmming of
the blade is too d in the beginning of the impeller and
that as a consequence nearly dl the work input is concen-
trated in the back portion of the impeller. This condition
is aggravated by the acceleration of the gas in the initiaI
portion (uIKI.<0 because u<O). Increasing the turning
rate, howev=, will open the flow area and cause 11~1 to
increase dew the area is controlled by bIade thickness.

A great disparity of -work exieti between the root and the
tip; the values for AH/alz are 0.65 and 2.5 at the exit. For
isentropic compression, the corresponding ratios of outIet to
inlet stagnation pressures are 2-.48 and 9.0 for the root and
the tip, respectively. The Mach number at the root at the
exit (z=rl, r=o.507 r’) is in the neighborhood of 2.25, and
a maximum due of about 2.5 is reached at z=r~, r=O.70 rt.
Subsonic Mach numbers are reached in the region
O<z/r,<O.3. The solution COUMnot be extended into this
region.

If the velocity were caused to decrease at the exit (z=r,)
by decreasing the velocity at the casing (r=r,) in the rear
part of the impeller (0.356 <z~r,<l.0), the mass-flow density
at the esit would increase ~it-h the decrease in -ieIocitty and
the required flow area -would decrease. Tertition of the
hub would be expected, not at. r= O.507 ~,, but at some larger
due where the work output would be higher. Another
method of reducing the blade height at the exit- and thereby
reducing the work variation there mould consist in reking
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the condition of 0=0 and ut~tig some other relations that
would correspond to lower Mach numbers. Two variables
or relations could also be prescribed at the exit, but conditions
on the blade tip (r=r~) could not be specified for some region
near the back of the impeIler. In this respect the entrance
and exitconditions would be similar.

ExampIe II: Prerotation of gas,—In order to maintain
supersonic flows throughout the impeIIers so that the flow
could be computed, the relative entrance Mach number at
the blade root for example 11 was increased by assuming an
initial counterrotation. The rotative speed had to be reduced
from 1.68 a, to 1.44 a, to m&ntain the work output, the
relati~e Mach number at. the leading-edge tip, approximately
the same blade angle there, and the same tial velooity com-
ponent. at the inlet. This reduction had a further beneficial
result of reducing the absolute Mach number at the esit for
a given relative velocity mially directed. The condition of
z= constant for the leadiq edge cannot be maintaine(l for
shockless entry with radid blade elements and a counter-
rotating free vortex entering the blade system. The sweep
amgle B chosen for this example was 45°, enough to permit
free selection of W= 1.94 a over the &tire blade tip, because

FlowCkmaMka.

the characteristic curves from the leadkg edge do not inter-
fme with boundary conditions on the cas&u. The reduction
in velocity at the casing reduces the blade height at the exit
and the work-output mmidion there.

b order to esamine deviations from an emunple more
nearIy representati-re of a good design, the -relocity at the
blade tip for example II was not rnaintahed the same as in
example 1, and consequently the d.iflerences beinreen examples
I and II are not ascribable solely to inlet prerotation. (lom-
pariaon of the effect on rotative speed (for the same turning
at the tip and the same work output) and on Musion at the
blade roots is, however, valid.

The results of the computations are shown in figure 4 (b).
In this example, the turning rate is predetermined in the
region —0.5<z/r~<o by the veIocity distribution upstream
of the leading edge, the condition of radial bla.de elements,
and tie sIope of the leading edge. The turning rate is con-
tinuous at z= O, and satisfies the equation

d rdo
()z z ‘3”008–2.298(3= –1)2 (o<z/r,<l/3)

=3.008 ~1–l/4(3z–1)~ (1/3< z/r,<l)
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Compared with the fist example, the work-input rate at the
blade tip is greater in the initial section; however, ,the work
distribution is stilI unsatisfactmy. The exit bhtde height is
also much less, with the result that the work input is much
more nearly equrdized; at the root the value of Ml/az is 1.8,
whereas at the tip the value is 2.5. These vfdues correspond
to stagnation pressure ratios of 5.2 at the root and 8.35 at the
tip. This variation could be reduced by sweeping back the
trailing edge to provide space for additional work input at
the hub streamline. This sweepback is more feasible with
the smaller blade height and work variation of the second
emnnple than for the first example.

Example ~: Effect of turning rate,—In order to reduce the
size of the impeller by increasing the ,t Wing rate, example
111 was computed wi& twice the blade turning rate of exam-
ple II for z>O and with the same over-all work output. One
result is the greater difIusion on the hub, where a minimum
Mach number of 1.2 is reached instead of 1.4 as in the pre-
vious example (see fig. 4 (c)). The increased difTusion
probably results from the increase in hub curvature, which
in turn is cm.sed by the shorter axial distances required for
the changes. Another result is the increased height of the

/.o–

.9 -

.8 -

<~ _
$.”

.6-

$—-—
-– —–eM/a”

blade at the exit, and an increase in the mit Mach number
from 2.3 h 2.7. The increased strwmdine curvature ako
accounts for the higher exit velocity and this higher velocity
in turn explains the larger blade height. The chti~ctcristic
Iine through the casing at the exit (r=rt, z=O.5 rf) mtersccts
the hub at 2=0.155 r,. The characteristics through t.hc re-
maining portion of the hub (z>O. 155 r~) are affected by con-
ditions a.t the esit (2=0.5 rl) where the velocities increase
with decreas~ radius. The result is a large incrcwm in
v.docity at the blade hub in the region z>o.155 rt.

Example IV: Effect of diffusion at casing.—ln the nmL
example, all conditions remained the same M in tbe third
examp~e e..cept that the prescribed velocity at the casing was
varied smoothly from the value of 1,94 a at z= 0.25 rc to

1.40 a at. z=O.5 r,. The desired reduction has been obtained

in blade height and work-output variation, but the cIischurgy

velocity has a large value of 2.6 a (fig. 4(d)). IL nMy thwc-

fore be concluded that the alternative of directly prescribing

a condition with low relative velocities at the exit would hu vc

been more effective than prescribing conditions at the Mule

tip for reducing the blade height at the exit.
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A new ph:zomenon has &o arisen in that the character-
istics passing through z= O.5r~, r=0.92rc and .z=O.5rL,
r=0.893rt intersect at z= O.397r~, T= O.832r~. At this
point, the Mach number chang~ discontinuously from 2.13
to 2.43 and the streamline inclination to the axis chmgea
from 14.9° to 7.4°. This single point-does not represent the
full extent of this difficulty. ActuilIy, there is a region
bounded by a curve in which ho solutions are obtained;
each solution is determined by a d.iflerent region of the
boundary. Consequently, the boundary comhtions are
incompatible with obtaining a si@e-vaIued continuous
solution. This situation is amdogous to the PrandtI-Meyer
flow, where the characteristics intersect at the corner. If a
computation were started for a simple hvo-dimeneiomd
supersonic flow from a stremrdine shape and horn the velocity
distributed thereon, which were exactly the same as on one of
the streamlines of a Prandtl-Meyer flow around a corner,
then, when the solution was extendecl toward the corner, the
characteristics would intersect at the corner in the manner
of figure 4 (d). The intersection on figure 4 (d) can be taken
ta represent a physical boundary to the fluid in that the
streamline passing through that point would be taken for
the hub shape. Only 90 percent of the flow (X=O.9) wuld
be accommodated in the impdler of example 11’ if continuous
flow with the imposed boundary conditions were required.
& obvious method of increasing the flow is to increase the
slope of the characteristic Iines at the exit for r<O.9r,. This

“$
—.—

“f

increase could be accomplished by decreasing the reIative
velocities there and discarding the condition U= O to obtain
a shorter blade height.

Example V: hcreasing blade thickness,-lh none of the
esampks computed so far was blade thicknees considered.
Au obvious effect of increasing blade thickness is to decrease
the velocity in a region where there is no independent con-
tiol of the velocity (such as the region z< O.35r,in emunple I,
@.4 (a)). This phenomenon provides the degree of freedom
required in such regions to cont,rcd the relative velocity ITI
as well as the surface velocities ~lT.\ and ITp(. In regiona
-ivhere the velocity IlT Iat the blade tips is under control (the
entire tip sections for examples II, III, IV), altogether dH-
ferent effects may be expected. The tiect of thickness
under these circumstances W= investigated by computing
another exampIe with a cosindike bump in the blade thick-
ness start-~~ at z= O.25r,. (See the previously presented
tabIe of boundary conditions.) The maximum thickness
was reached at z= O.375T,. At r=r~ the thickness is 20
percent of the blade spacing, and at the hub the mhe is 25
percent. The results of the computation are show-n in figure
4 (e). The effect of the bump is not felt. upstream of the
chsrac terist-ic with positive slope passing through z= O25r~,
r=~,. The most obvious effect is a decrease of flow Mach
number in the region of increasing thickness (and inward
from the casing, where the velocity is not preassigned), se
might be e~ected from one-dimensional theory. At z=

t I r I ! I I I I 1 1 I I I I 1 I ! [
75 .4 .3 72 7/ o ./ 2 .3 4 .5

z/rt

(e) EmnpIe V.
RGGBEL-COMmM. Flew bxacterkfcs.
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0.25r~andz=O.375r,, thechangeinbla.de height is about 10per-
cent as compared with example IV. Another effect of
thickness is to be seen in the. waviness QIthe. hub strearnl~~e
in the region O.15<z/rf<0.25” ivhere the thiclmess has not
yet st@d ta increase. This bump may be traced in other
streamlines along the characteristic running through the
point of maximum thick.mas.at the.casing (~=r,, 2=0.375 r,).
The effect of the bump on the hub is therefore to increase the
local velocity by curvature in order to hold -the required
velocity at the casing; this action from hub to casing takes
place along the characteristic Iine as simple waves in two
dimensions, and the velocity is seen to have increased aLI
along this characteristic line. The intisec tion of the char-
acteristics and the double-valued solution occur near the
exit over a considerably larger portion of the flow thaa in
the previous example.
looity were prescribed

In &is example also, if a lower ve-
st the exit, a unique solutiou would I

be obtained. It would ak.o be feasible to carry out. this
idea and at the same time to prescribe another condition
(such as 0=0) provided that one were willing to lose control
of the condition at the brick portion of the casing (r=rl) in
a manner analogous to tlmt used at tho front portiou in
example I.

Example VI: lUYect of leading-edge sweep,—It is of more
tecbnicaL interest, however, to carry out this schemo at tho
entrance, for then the leading-edge sweep may be reduced
from 50 percent of the afial depth of the machine to comider-
ably lw.. A computation of the inlet flow conditions for
such an impeller is shown in iigure 4 (f), where tlw condi t ions
at the leading edge are the same as for example 111. ‘rho
blade shape is diilerent, with the second derivative of mgle
G?O/cl&=-7&(z)@? constant. Also, the velociLy at r= 1,0
cannot bs prescribed. Only in the region enclosed by the
casing and leading-edge characteristics was the computation

AH/a Rz
7020 ./ ..5 /.0 20702

Leading
edge ---

‘.

Y
/ =:=i$H/a‘a

f

L8. ---.-

,..
y {f) I ! 1. f I I I I I t I I I

o ./ .2
.

.3 :4 .5 ““ ““ .6
Zp?t

(f) Exm.?lpI@VI.
FKJUEEL-Concluded, FIOW01.uuc&~Itx.



AxsY?vlMETRIc s UPERSONIC FLOW IN ROTATING llTPE.LLERS 535

completed. The result (fig. 4 (f)) shows a huge increase in
Mach number, epecialIy at the blade tip. Because of this
increase, the blade turning accomplishes no work in the
beginnii of the impelIer, but shows a. region of energy
abstraction from the air; the initial negative rotational com-
ponent becomes more negative as the air turns axially and
the ve~oci~ increases as in e~mple I. The situation is
quite different in the back portion where the blade angles
approach zero and the tangential component does liketie;
all the work input is conoent.rated in the back portion of this
impeller as in the other emunples. Postponement of work
input to the back portion of the impeller is to be expected in
any case -where the veloci@ is increasing as the blades turn
to-ward the axial direction, or where the velocity is decreasing
as the blades turn past the axial direction. Mad flow
snd work distribution could be considerably improved in
this example by increasing blade thiclmess m the region of
large velocity increase.

CO~CL~SIONS

General equations developed for isentropicl tiyrnmetric
flows in rotating impeIlere with my given blade shapes
showed that the blade-force term can be eliminated and
solved for, if desired, after the flow solution is completed.
Further, if the flow upstream of the impelIer is vortex-free,
then a. potential function of only radial and d distances
exists, which may be used to find the projection of the
absolute velocity on the blade surface.

For supersonic flow, the method of characteristics was
used to compute the flow for severtd =amples with radid
blade eIements and vortex-free inflow. These emunples
show that

(1) With zero radial inflow, the influence of the leading
edge and the blade turning on the cming veloci~ m regions
where this velocity cannot be prescribed in advance causes
an increase in velocity and a reduction of blade loading and
work input in the initial portion of the compressor. These
effects can be compensated for to some e~tent by increasing
blade thickness.

(2) Sutllcient leading-edge sweepback adds a degree of
freedom to the boundary conditions at the blade tips and

therefore permits a more constant or a decreasing velocity
inside the impelIer.

(3) Reduction in the etit veIocity results in a shorter blade
he&ht and a more uniform distribution of work input at the
esit.

(4) Increase in the rate of turning causes more rapid hub
curvatures and consequently Iarger internal veloci~ gra-
dients. DMusion on the hub is therefore greater in the
initial part of the impelk, and a Iower velocity minimum is
reached there, whereas the gas -doci~ at. the hub near t-he
tit reaches Iarger -raIues. This situation requires larger
blade heights at the etit with a Iarger esit ~elocity at the
root and greater variation of work output from root to tip.
Dfision of the gas velocity at the tip will moderate this
effect, as wi.11also a rekmation of the condition of zero radid
velocity at the mit sud the substitution of a condition gitig
lovrer tit velotitiw.

(5) Not every set of boundary conditions results in a
continuous, single-valued solution in t-he region of interest.
h the examples considered, a rekation of the condition of
zero radial velocity at the etit would have permitted another
condition giving lovrer ~elocities there. This condition
would have eliminated the region of the double-wdued
solution and given a shorter blade and a more needy
equaIized work output.

(6) The effect of variations in blade thickness in regions
where veIoci@ is &o prescribed at the blade tip is to change
the velocity as in one-dimensional flow but not by the same
amount, for there is some compensation by variations in
blade height. The prescribed mloci~ and thickness require
hub curvatures that cause veIocity ohmges ta be projected
like simple vraves on characteristic curves. It is therefore
poesibIe to tlnd regions of rncreased velocity when the blade
thiclmeas is increased.

~E-iVIS FmmT PROPULSION ILABORATORT,

NATIOXAL ADVISORYCO~EE ITOBAERONAmCS,
CLEVEIA.ND,OHIO, Jantia?y I?J, ~~d~.

APPENDIX

SYMBOLS

The following symbok are used in this report: E sum of stagnation enthalpy and potential eneragg

A T—Nt/2r of gas (speefic) in mo~ coordinates

a sonic velocity of gas
(

~hlw &

al sonic velocity of gas at conjunction of leading edge 2–2 )
rmd impeller case F distributed blade force per unit maas of fluid (a

a* criticaI speed of gas upstream of impeller vector)

B an abbreviation (see equations (2 la)) f part of blade surface function dependent on r and z

DIJIZ abbreviations (see equations (218)) only (a= e+-(r,z) )
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an abbreviation (see equations (2 la))
absolute stagnation enthalpy (h.+ Vz/2)
work input to gas (rise in absolute stagnation

enthalpy)
static entldpy of gas (specific)
unit vector paralIel to curve O=constant, z=

constant. (i= Vr)
an abbreviation (see equations (21a))
unit vecdor parallel to curve z=constant, r=conetant

(j=rve)
unit vector parallel to curve r= comhnt, 0=

constant (k=Vz)
an abbreviation (see equations (21a))

local relative Mach number
~7

(11)T
number of blades
static pressure of gas
unit vector parallel to 11’
vector of r
normal distance from axis of rotati?.on
distance from axia of rotation to blade tip at ~eading

edge
arc-length element parallel to W’
blade thickness measured in direction of. rotation
rotational component of relativmg$e velocity
absolute gas velocity (a vector) [io+j (u+ar) +Irzv]
radial cmmponent of gas velocity
relative gas velocity (a vector) (io+@+kW)

axial component of gas velocity
distance measured pmallel to W& of Ntation
function for blade surface (a (r,d,z)=conshmtJ

angle between meridional projection of leading cdgr
ancl mis of rotation

ratio of specific.heats
either f+ or ~_ in generfd form of equations
slope of cur+c for ~ variable, ~ oonsttit
slope of curve for q variable, ~ constant
one of Awacteristic coordinates for gm fiulv in

impeller
meridional angle (for cylindrical C00dha!A2S)

absolute moment of momentum (r (u+ wr))
one of characteristic morclinates for gas flow in

impeller
g~ density
either T or : in general form of equations
velocity-potential function of r and 2 only thtit, exists

for initially irrotational absolute motion
stream funciion (V*= pAj X ~7)
vector form of w
angular velocity of impeller

Subscripts:

o ufktream of impeller

P pressure surface of Made. at tip
s suction surface of blade at tip

Subscripts r, 0, z, a, & T indicate partial
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